Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst - Science

J. Dumortier, M. Le Verge-Serandour, A.-F. Tortorelli, A. Mielke, L. de Plater, H. Turlier*, J-L. Maître, Science 365, 465-468 (2019).

During mouse pre-implantation development, the formation of the blastocoel, a fluid-filled lumen, breaks the radial symmetry of the blastocyst. The factors that control the formation and positioning of this basolateral lumen remain obscure. We found that accumulation of pressurized fluid fractures cell-cell contacts into hundreds of micrometer-size lumens. These microlumens eventually discharge their volumes into a single dominant lumen, which we model as a process akin to Ostwald ripening, underlying the coarsening of foams. Using chimeric mutant embryos, we tuned the hydraulic fracturing of cell-cell contacts and steered the coarsening of microlumens, allowing us to successfully manipulate the final position of the lumen. We conclude that hydraulic fracturing of cell-cell contacts followed by contractility-directed coarsening of microlumens sets the first axis of symmetry of the mouse embryo.

Read more: publisher - preprint

mouse_embryo.png
Previous
Previous

A hydro-osmotic coarsening theory of biological cavity formation - PLoS Comput. Biol.

Next
Next

Unveiling the active nature of living-membrane fluctuations and mechanics